Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Gen Virol ; 102(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34816791

RESUMO

Understanding how vectors alter the interactions between viruses and their hosts is a fundamental question in virology and disease ecology. In honey bees, transmission of deformed wing virus (DWV) by parasitic Varroa mites has been associated with elevated disease and host mortality, and Varroa transmission has been hypothesized to lead to increased viral titres or select for more virulent variants. Here, we mimicked Varroa transmission by serially passaging a mixed population of two DWV variants, A and B, by injection through in vitro reared honey bee pupae and tracking these viral populations through five passages. The DWV-A and DWV-B variant proportions shifted dynamically through passaging, with DWV-B outcompeting DWV-A after one passage, but levels of both variants becoming equivalent by Passage 5. Sequencing analysis revealed a dominant, recombinant DWV-B strain (DWV-A derived 5' IRES region with the rest of the genome DWV-B), with low nucleotide diversity that decreased through passaging. DWV-A populations had higher nucleotide diversity compared to DWV-B, but this also decreased through passaging. Selection signatures were found across functional regions of the DWV-A and DWV-B genomes, including amino acid mutations in the putative capsid protein region. Simulated vector transmission differentially impacted two closely related viral variants which could influence viral interactions with the host, demonstrating surprising plasticity in vector-host-viral dynamics.


Assuntos
Vetores Aracnídeos/virologia , Abelhas/virologia , Vírus de RNA/fisiologia , Varroidae/virologia , Animais , Mutação , Pupa/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/crescimento & desenvolvimento , Inoculações Seriadas
2.
Parasit Vectors ; 14(1): 544, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686195

RESUMO

BACKGROUND: A field survey was performed to investigate local environmental factors promoting occurrence and abundance of Aedes aegypti and Ae. bromeliae mosquitoes at hotel compounds in the south-east coastal region of Zanzibar Island. METHODS: The potential risk factors were determined using generalized linear mixed models. Aedes (Stegomyia) spp. indices such as container index (CI) and pupae per container (PPC) index were also estimated. RESULTS: Aedes aegypti and Ae. bromeliae were the most abundant vector species, accounting for 70.8% of all Aedes mosquitoes collected. The highest CI was observed for plastic containers irrespective of the season, whereas the highest PPC was observed for coconut shells and aluminium containers in the rainy and dry seasons, respectively. The risk of Aedes mosquito occurrence and abundance were significantly associated with presence of plastic containers, coconut shells, used tyres and steel containers. These were discarded in shaded places, in the open and gardens, or found in plant nurseries. CONCLUSION: This study shows that Aedes species of global health significance occur at hotel compounds on this part of Zanzibar Island. The occurrence and abundance are sustained by the presence of abundant and poorly managed solid wastes and containers used for gardening tasks. This highlights an urgent need for the adoption of area-wide environmentally sustainable Aedes mosquito management interventions that also integrate solid waste management and ornamental plant production practices for reducing the risk of arboviral disease epidemics.


Assuntos
Aedes/fisiologia , Distribuição Animal , Mosquitos Vetores/fisiologia , Aedes/classificação , Aedes/virologia , Animais , Dengue/transmissão , Dengue/virologia , Habitação , Larva/virologia , Mosquitos Vetores/virologia , Pupa/virologia , Chuva , Fatores de Risco , Estações do Ano , Tanzânia , Viagem
3.
Parasit Vectors ; 14(1): 458, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493321

RESUMO

BACKGROUND: Vector-borne diseases are a major cause of disease burden in Guayaquil, Ecuador, especially arboviruses spread by Aedes aegypti mosquitoes. Understanding which household characteristics and risk factors lead to higher Ae. aegypti densities and consequent disease risk can help inform and optimize vector control programs. METHODS: Cross-sectional entomological surveys were conducted in Guayaquil between 2013 and 2016, covering household demographics, municipal services, potential breeding containers, presence of Ae. aegypti larvae and pupae, and history of using mosquito control methods. A zero-truncated negative binomial regression model was fitted to data for estimating the household pupal index. An additional model assessed the factors of the most productive breeding sites across all of the households. RESULTS: Of surveyed households, 610 satisfied inclusion criteria. The final household-level model found that collection of large solid items (e.g., furniture and tires) and rainfall the week of and 2 weeks before collection were negatively correlated with average pupae per container, while bed canopy use, unemployment, container water volume, and the interaction between large solid collection and rainfall 2 weeks before the sampling event were positively correlated. Selection of these variables across other top candidate models with ∆AICc < 1 was robust, with the strongest effects from large solid collection and bed canopy use. The final container-level model explaining the characteristics of breeding sites found that contaminated water is positively correlated with Ae. aegypti pupae counts while breeding sites composed of car parts, furniture, sewerage parts, vases, were all negatively correlated. CONCLUSIONS: Having access to municipal services like bulky item pickup was effective at reducing mosquito proliferation in households. Association of bed canopy use with higher mosquito densities is unexpected, and may be a consequence of large local mosquito populations or due to limited use or effectiveness of other vector control methods. The impact of rainfall on mosquito density is multifaceted, as it may both create new habitat and "wash out" existing habitat. Providing services and social/technical interventions focused on monitoring and eliminating productive breeding sites is important for reducing aquatic-stage mosquito densities in households at risk for Ae. aegypti-transmitted diseases.


Assuntos
Aedes/fisiologia , Características da Família , Pupa/fisiologia , Aedes/virologia , Distribuição Animal , Animais , Estudos Transversais , Dengue/transmissão , Ecossistema , Equador , Humanos , Controle de Mosquitos , Mosquitos Vetores/virologia , Pupa/virologia , Fatores de Risco , População Rural
4.
Sci Rep ; 11(1): 8989, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903723

RESUMO

Transmission routes impact pathogen virulence and genetics, therefore comprehensive knowledge of these routes and their contribution to pathogen circulation is essential for understanding host-pathogen interactions and designing control strategies. Deformed wing virus (DWV), a principal viral pathogen of honey bees associated with increased honey bee mortality and colony losses, became highly virulent with the spread of its vector, the ectoparasitic mite Varroa destructor. Reproduction of Varroa mites occurs in capped brood cells and mite-infested pupae from these cells usually have high levels of DWV. The removal of mite-infested pupae by worker bees, Varroa Sensitive Hygiene (VSH), leads to cannibalization of pupae with high DWV loads, thereby offering an alternative route for virus transmission. We used genetically tagged DWV to investigate virus transmission to and between worker bees following pupal cannibalisation under experimental conditions. We demonstrated that cannibalization of DWV-infected pupae resulted in high levels of this virus in worker bees and that the acquired virus was then transmitted between bees via trophallaxis, allowing circulation of Varroa-vectored DWV variants without the mites. Despite the known benefits of hygienic behaviour, it is possible that higher levels of VSH activity may result in increased transmission of DWV via cannibalism and trophallaxis.


Assuntos
Abelhas/virologia , Canibalismo , Vírus de RNA/metabolismo , Varroidae/virologia , Animais , Pupa/virologia
5.
J Invertebr Pathol ; 186: 107569, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33727045

RESUMO

Tephritid fruit flies are amongst the most devastating pests of horticulture, and Sterile Insect Technique (SIT) programs have been developed for their control. Their interactions with viruses are still mostly unexplored, yet, viruses may negatively affect tephritid health and performance in SIT programs, and, conversely, constitute potential biological control agents. Here we analysed ten transcriptome libraries obtained from laboratory populations of nine tephritid species from Australia (six species of Bactrocera, and Zeugodacus cucumis), Asia (Bactrocera dorsalis) and Europe (Ceratitis capitata). We detected new viral diversity, including near-complete (>99%) and partially complete (>80%) genomes of 34 putative viruses belonging to eight RNA virus families. On average, transcriptome libraries included 3.7 viruses, ranging from 0 (Z. cucumis) to 9 (B. dorsalis). Most viruses belonged to the Picornavirales, represented by fourteen Dicistroviridae (DV), nine Iflaviridae (IV) and two picorna-like viruses. Others were a virus from Rhabdoviridae (RV), one from Xinmoviridae (both Mononegavirales), several unclassified Negev- and toti-like viruses, and one from Metaviridae (Ortervirales). Using diagnostic PCR primers for four viruses found in the transcriptome of the Bactrocera tryoni strain bent wings (BtDV1, BtDV2, BtIV1, and BtRV1), we tested nine Australian laboratory populations of five species (B. tryoni, Bactrocera neohumeralis, Bactrocera jarvisi, Bactrocera cacuminata, C. capitata), and one field population each of B. tryoni, B. cacuminata and Dirioxa pornia. Viruses were present in most laboratory and field populations yet their incidence differed for each virus. Prevalence and co-occurrence of viruses in B. tryoni and B. cacuminata were higher in laboratory than field populations. This raises concerns about the potential accumulation of viruses and their potential health effects in laboratory and mass-rearing environments which might affect flies used in research and control programs such as SIT.


Assuntos
Vírus de RNA/isolamento & purificação , Tephritidae/virologia , Animais , Embrião não Mamífero/virologia , Feminino , Genoma Viral , Larva/crescimento & desenvolvimento , Larva/virologia , Masculino , Pupa/crescimento & desenvolvimento , Pupa/virologia , Vírus de RNA/genética , Tephritidae/crescimento & desenvolvimento , Transcriptoma
6.
Insect Sci ; 28(1): 103-114, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31953986

RESUMO

Insects possess specific immune responses to protect themselves from different types of pathogens. Activation of immune cascades can inflict significant developmental costs on the surviving host. To characterize infection kinetics in a surviving host that experiences baculovirus inoculation, it is crucial to determine the timing of immune responses. Here, we investigated time-dependent immune responses and developmental costs elicited by inoculations from each of two wild-type baculoviruses, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Helicoverpa zea single nucleopolyhedrovirus (HzSNPV), in their common host H. zea. As H. zea is a semi-permissive host of AcMNPV and fully permissive to HzSNPV, we hypothesized there are differential immune responses and fitness costs associated with resisting infection by each virus species. Newly molted 4th-instar larvae that were inoculated with a low dose (LD15 ) of either virus showed significantly higher hemolymph FAD-glucose dehydrogenase (GLD) activities compared to the corresponding control larvae. Hemolymph phenoloxidase (PO) activity, protein concentration and total hemocyte numbers were not increased, but instead were lower than in control larvae at some time points post-inoculation. Larvae that survived either virus inoculation exhibited reduced pupal weight; survivors inoculated with AcMNPV grew slower than the control larvae, while survivors of HzSNPV pupated earlier than control larvae. Our results highlight the complexity of immune responses and fitness costs associated with combating different baculoviruses.


Assuntos
Aptidão Genética , Imunidade Inata , Mariposas/imunologia , Animais , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/virologia , Mariposas/crescimento & desenvolvimento , Mariposas/virologia , Nucleopoliedrovírus , Pupa/crescimento & desenvolvimento , Pupa/imunologia , Pupa/virologia , Fatores de Tempo
7.
PLoS Negl Trop Dis ; 14(10): e0008768, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33104693

RESUMO

Dengue vector entomological indices are widely used to monitor vector density and disease control activities. But the value of these indices as predictors of dengue infection is not established. We used data from the impact assessment of a trial of community mobilization for dengue prevention (Camino Verde) to examine the associations between vector indices and evidence of dengue infection and their value for predicting dengue infection levels. In 150 clusters in Mexico and Nicaragua, two entomological surveys, three months apart, allowed calculation of the mean Container Index, Breteau index, Pupae per Household Index, and Pupae per Container Index across the two surveys. We measured recent dengue virus infection in children, indicated by a doubling of dengue antibodies in paired saliva samples over the three-month period. We examined the associations between each of the vector indices and evidence of dengue infection at household level and at cluster level, accounting for trial intervention status. To examine the predictive value for dengue infection, we constructed receiver operating characteristic (ROC) curves at household and cluster level, considering the four vector indices as continuous variables, and calculated the positive and negative likelihood ratios for different levels of the indices. None of the vector indices was associated with recent dengue infection at household level. The Breteau Index was associated with recent infection at cluster level (Odds ratio 1.36, 95% confidence interval 1.14-1.61). The ROC curve confirmed the weak predictive value for dengue infection of the Breteau Index at cluster level. Other indices showed no predictive value. Conventional vector indices were not useful in predicting dengue infection in Mexico and Nicaragua. The findings are compatible with the idea of sources of infection outside the household which were tackled by community action in the Camino Verde trial.


Assuntos
Aedes/fisiologia , Vírus da Dengue/fisiologia , Dengue/transmissão , Mosquitos Vetores/fisiologia , Aedes/virologia , Animais , Anticorpos Antivirais/sangue , Dengue/sangue , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/imunologia , Características da Família , Humanos , México/epidemiologia , Controle de Mosquitos , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/virologia , Nicarágua/epidemiologia , Pupa/crescimento & desenvolvimento , Pupa/virologia
8.
J Vis Exp ; (162)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32925874

RESUMO

Honey bees are of great ecological and agricultural importance around the world but are also subject to a variety of pressures that negatively affect bee health, including exposure to viral pathogens. Such viruses can cause a wide variety of devastating effects and can often be challenging to study due to multiple factors that make it difficult to separate the effects of experimental treatments from preexisting background infection. Here we present a method to mass produce large quantities of virus particles along with a high throughput bioassay to test viral infection and effects. Necessitated by the current lack of a continuous, virus-free honey bee cell line, viral particles are amplified in vivo using honey bee pupae, which are extracted from the hive in large volumes using minimally stressful methodology. These virus particles can then be used in honey bee cage bioassays to test inocula viability, as well as various other virus infection dynamics, including interactions with nutrition, pesticides, and other pathogens. A major advantage of using such particles is that it greatly reduces the chances of introducing unknown variables in subsequent experimentation when compared to current alternatives, such as infection via infected bee hemolymph or homogenate, though care should still be taken when sourcing the bees, to minimize background virus contamination. The cage assays are not a substitute for large-scale, field-realistic experiments testing virus infection effects at a colony level, but instead function as a method to establish baseline viral responses that, in combination with the semi-pure virus particles, can serve as important tools to examine various dimensions of honey bee-virus physiological interactions.


Assuntos
Abelhas/virologia , Boca/virologia , Viroses/virologia , Vírus/metabolismo , Animais , Bioensaio , Linhagem Celular , Comportamento Alimentar , Larva/virologia , Pupa/virologia , RNA Viral/isolamento & purificação , Carga Viral , Vírion/fisiologia
9.
Viruses ; 12(7)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659903

RESUMO

Many attempts to develop a reliable cell cultured-based system to study honey bee virus infections have encountered substantial difficulties. We investigated the ability of a cell line from a heterologous insect to sustain infection by a honey bee virus. For this purpose, we infected the Lepidopteran hemocytic cell line (P1) with Deformed wing virus (DWV). The genomic copies of DWV increased upon infection, as monitored by quantitative RT-PCR. Moreover, a tagged-primer-based RT-PCR analysis showed the presence of DWV negative-sense RNA in the cells, indicating virus replication. However, the DWV from infected cells was mildly infectious to P1 cells. Similar results were obtained when the virus was injected into Apis mellifera pupae. Thus, though the virus yields from the infected cells appeared to be very low, we show for the first time that DWV can replicate in a heterologous cell line. Given the availability of many other insect cell lines, our study paves the way for future exploration in this direction. In the absence of adequate A. mellifera cell lines, exploring the ability of alternative cell lines to enable honey bee virus infections could provide the means to study and understand the viral infectious cycle at the cellular level and facilitate obtaining purified isolates of these viruses.


Assuntos
Vírus de RNA/fisiologia , Spodoptera/virologia , Animais , Abelhas/virologia , Linhagem Celular , Reação em Cadeia da Polimerase , Pupa/virologia , Vírus de RNA/patogenicidade , Replicação Viral
10.
Viruses ; 12(5)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408550

RESUMO

Environmental and agricultural pollination services by honey bees, Apis mellifera, and honey production are compromised by high levels of annual colony losses globally. The majority are associated with disease caused by deformed wing virus (DWV), a positive-strand RNA virus, exacerbated by the ectoparasitic mite Varroa destructor. To improve honey bee health, a better understanding of virus transmission and pathogenesis is needed which requires the development of tools to study virus replication, transmission, and localisation. We report the use of reverse genetic (RG) systems for the predominant genetically distinct variants of DWV to address these questions. All RG-recovered viruses replicate within 24 h post-inoculation of pupae and could recapitulate the characteristic symptoms of DWV disease upon eclosion. Larvae were significantly less susceptible but could be infected orally and subsequently developed disease. Using genetically tagged RG DWV and an in vitro Varroa feeding system, we demonstrate virus replication in the mite by accumulation of tagged negative-strand viral replication intermediates. We additionally apply a modified DWV genome expressing a fluorescent reporter protein for direct in vivo observation of virus distribution in injected pupae or fed larvae. Using this, we demonstrate extensive sites of virus replication in a range of pupal tissues and organs and in the nascent wing buds in larvae fed high levels of virus, indicative of a direct association between virus replication and pathogenesis. These studies provide insights into virus replication kinetics, tropism, transmission, and pathogenesis, and produce new tools to help develop the understanding needed to control DWV-mediated colony losses.


Assuntos
Abelhas/virologia , Vírus de RNA/fisiologia , Tropismo Viral , Replicação Viral , Animais , Abelhas/parasitologia , Larva/virologia , Pupa/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Genética Reversa , Varroidae/virologia
11.
Viruses ; 12(5)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380682

RESUMO

Naturally occurring covert infections in lepidopteran populations can involve multiple viruses with potentially different transmission strategies. In this study, we characterized covert infection by two RNA viruses, Spodoptera exigua iflavirus 1 (SeIV-1) and Spodoptera exigua iflavirus 2 (SeIV-2) (family Iflaviridae) that naturally infect populations of Spodoptera exigua, and examined their influence on susceptibility to patent disease by the nucleopolyhedrovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) (family Baculoviridae). The abundance of SeIV-1 genomes increased up to ten-thousand-fold across insect developmental stages after surface contamination of host eggs with a mixture of SeIV-1 and SeIV-2 particles, whereas the abundance of SeIV-2 remained constant across all developmental stages. Low levels of SeIV-2 infection were detected in all groups of insects, including those that hatched from surface-decontaminated egg masses. SeIV-1 infection resulted in reduced larval weight gain, and an unbalanced sex ratio, whereas larval developmental time, pupal weight, and adult emergence and fecundity were not significantly affected in infected adults. The inoculation of S. exigua egg masses with iflavirus, followed by a subsequent infection with SeMNPV, resulted in an additive effect on larval mortality. The 50% lethal concentration (LC50) of SeMNPV was reduced nearly 4-fold and the mean time to death was faster by 12 h in iflavirus-treated insects. These results suggest that inapparent iflavirus infections may be able to modulate the host response to a new pathogen, a finding that has particular relevance to the use of SeMNPV as the basis for biological pest control products.


Assuntos
Nucleopoliedrovírus/fisiologia , Picornaviridae/fisiologia , Spodoptera/virologia , Animais , Genoma Viral , Larva/crescimento & desenvolvimento , Larva/virologia , Nucleopoliedrovírus/genética , Controle Biológico de Vetores , Picornaviridae/genética , Pupa/crescimento & desenvolvimento , Pupa/virologia , Spodoptera/crescimento & desenvolvimento
12.
PLoS Negl Trop Dis ; 14(4): e0008209, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32310960

RESUMO

Dengue, a vector-borne disease spread by Aedes mosquitoes, is a global threat. In the absence of an efficacious dengue vaccine, vector control is the key intervention tool in Singapore. A good understanding of vector habitats is essential to formulate operational strategies. We examined the distribution, long-term trend and seasonality of Aedes data collected during regulatory inspections in residences and public areas from 2008 to 2017. We also studied the seasonality of climate factors to understand their influence on the detection of Aedes-positive containers. The most frequently reported Aedes-positive containers were domestic containers, drains, discarded receptacles, ornamental containers, flower pot plates/trays, plants, gully traps, canvas/plastic sheet, bins, ground puddle, inspection chambers and roof tops/gutters. We found more Ae. aegypti and Ae. albopictus-positive containers per inspection in residences and public areas, respectively. The seasonality of Ae. aegypti-positive containers in residences and public areas coincided with that of mean temperature. However, the seasonality of Ae. albopictus-positive containers lagged by one month compared to that of mean temperature. Our study demonstrates the seasonal fluctuations of Aedes-positive containers in an urban environment. Understanding the distribution and seasonality of Aedes breeding helps to facilitate resource planning and community awareness to moderate dengue transmission.


Assuntos
Aedes/crescimento & desenvolvimento , Aedes/virologia , Distribuição Animal , Meio Ambiente , Estações do Ano , Aedes/classificação , Animais , Dengue/transmissão , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/fisiologia , Habitação , Larva/virologia , Mosquitos Vetores/virologia , Pupa/virologia , Singapura
13.
J Invertebr Pathol ; 170: 107324, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31926971

RESUMO

Apis mellifera pupae and their parasites Tropilaelaps and Varroa destructor were collected from honey bee hives in Palawan, Philippines for species identification of the Tropilaelaps and viral analyses. Genetic analysis identified Tropilaelaps mercedesae infesting A. mellifera on the island. Viral analyses showed that all pupae and their infesting Tropilaelaps or Varroa shared the same Deformed Wing Virus (DWV) variant infections with DWV-B being more prevalent than DWV-A. Pupae infested with either Varroa or Tropilaelaps had higher levels of both DWV variants than uninfested pupae. Vigilance is needed to prevent the spread of Tropilaelaps clareae into Palawan and T. mercedesae and DWV variants from Palawan to other provinces.


Assuntos
Abelhas/virologia , Interações Hospedeiro-Parasita , Ácaros/classificação , Ácaros/virologia , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/parasitologia , Ácaros/fisiologia , Filipinas , Pupa/crescimento & desenvolvimento , Pupa/parasitologia , Pupa/virologia , Vírus de RNA/isolamento & purificação , Varroidae/fisiologia , Varroidae/virologia , Carga Viral/fisiologia
14.
J Vector Borne Dis ; 57(1): 63-70, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33818458

RESUMO

BACKGROUND & OBJECTIVES: Mosquitoes are vectors of several important vector-borne diseases (VBDs) like malaria, dengue, chikungunya, Japanese encephalitis (JE) and lymphatic filariasis (LF). Globally, these VBDs are of major public health concern including India. The information on vector mosquitoes from Thiruvarur district in Tamil Nadu state remains largely either unknown or undocumented. The present study was, therefore, undertaken to find out the seasonal variation in mosquitoes with special reference to dengue vectors in rural areas of Thiruvarur district, Tamil Nadu, India. METHODS: Surveillance of immature vector mosquitoes was undertaken from March 2018 to February 2019. The emerged adults were identified to find out the composition of mosquito species prevalent in the district. The seasonal variations of the mosquitoes especially dengue vectors were analysed for summer (March-July) spring (August-November) and winter (December-February) seasons in all the blocks of Thiruvarur district. RESULTS: A total of 4879 mosquitoes emerged from the immature collection and the species identification revealed the prevalence of both vector and non-vector species. Five important mosquito vectors collected were -Aedes albopictus, Ae. aegypti, Culex tritaeniorhynchus, Cx. gelidus, and Cx. quinquefasciatus. Other mosquito species collected were Lutzia fuscana, Anopheles barbirostris, An. subpictus, and Armigeres (Armigeres) subalbatus. During the spring season, the dengue vectors showed high indices of breateau index (BI), ranging from 16 to 120; besides, container index (CI) ranging from14.29 to 68.57 and pupal index (PI) from 53.33 to 295 among the study blocks. The major breeding sites were discarded plastic containers, discarded tyres, open sintex tanks (water storage tanks), cement tanks, discarded fibre box, pleated plastic sheets, tree holes, bamboo cut stumps, coconut spathe, and coconut shells. INTERPRETATION & CONCLUSION: The immature vector surveillance revealed seasonal variations in the entomological indices of Aedes breeding potential. The high indices observed indicate high Aedes breeding density and, therefore, a higher risk for dengue/chikungunya outbreaks in rural areas of Thiruvarur district. The present finding warrants intensive surveillance and follow up vector control measures to avert outbreaks and prevent vector-borne diseases. Health education and the community participation in awareness camps prior to monsoon and societal commitment will help in strengthening source reduction, anti-larval operations and anti-adult measures to tackle vector-borne diseases especially dengue.


Assuntos
Culicidae/virologia , Dengue/transmissão , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , População Rural , Estações do Ano , Aedes/fisiologia , Aedes/virologia , Animais , Anopheles/fisiologia , Anopheles/virologia , Culex/fisiologia , Culex/virologia , Culicidae/classificação , Culicidae/fisiologia , Dengue/prevenção & controle , Dengue/virologia , Surtos de Doenças , Índia , Larva/fisiologia , Larva/virologia , Pupa/fisiologia , Pupa/virologia
15.
PLoS Negl Trop Dis ; 13(7): e0007420, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31295250

RESUMO

BACKGROUND: Vector control remains the primary method to prevent dengue infections. Environmental interventions represent sustainable and safe methods as there are limited risks of environmental contamination and toxicity. The objective of this study is to perform a systematic review and meta-analysis of the effectiveness of the following environmental methods for dengue vector control. METHODOLOGY/PRINCIPAL FINDINGS: Following the PRISMA guidelines, a systematic literature search was conducted using the databases PubMed, EMBASE, LILACS, the Cochrane Library and Google Scholar. Quality assessment was done using the CONSORT 2010 checklist. For the meta-analysis the difference-in-differences (DID) and the difference-of-endlines (DOE) were calculated according to the Schmidt-Hunter method for the Breteau index (BI) and the pupae per person index (PPI). Nineteen studies were eligible for the systematic review, sixteen contributed data to the meta-analysis. The following methods were evaluated: (a) container covers with and without insecticides, (b) waste management and clean-up campaigns, and (c) elimination of breeding sites by rendering potential mosquito breeding sites unusable or by eliminating them. Study quality was highest for container covers with insecticides, followed by waste management without direct garbage collection and elimination of breeding places. Both, systematic review and meta-analysis, showed a weak effect of the interventions on larval populations, with no obvious differences between the results of each individual method. For the meta-analysis, both, container covers without insecticides (BI: DID -7.9, DOE -5) and waste management with direct garbage collection (BI: DID -8.83, DOE -6.2) achieved the strongest reductions for the BI, whereas for the PPI results were almost opposite, with container covers with insecticides (PPI: DID -0.83, DOE 0.09) and elimination of breeding places (PPI: DID -0.95, DOE -0.83) showing the strongest effects. CONCLUSIONS: Each of the investigated environmental methods showed some effectiveness in reducing larval and pupal densities of Aedes sp. mosquitoes. However, there is a need for more comparable high-quality studies at an adequate standard to strengthen this evidence.


Assuntos
Dengue/prevenção & controle , Microbiologia Ambiental , Inseticidas , Controle de Mosquitos/métodos , Mosquitos Vetores/virologia , Aedes/virologia , Animais , Larva/virologia , Pupa/virologia , Saúde da População Urbana , Abastecimento de Água
16.
Proc Biol Sci ; 286(1901): 20190331, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30991929

RESUMO

The association between the deformed wing virus and the parasitic mite Varroa destructor has been identified as a major cause of worldwide honeybee colony losses. The mite acts as a vector of the viral pathogen and can trigger its replication in infected bees. However, the mechanistic details underlying this tripartite interaction are still poorly defined, and, particularly, the causes of viral proliferation in mite-infested bees. Here, we develop and test a novel hypothesis that mite feeding destabilizes viral immune control through the removal of both virus and immune effectors, triggering uncontrolled viral replication. Our hypothesis is grounded on the predator-prey theory developed by Volterra, which predicts prey proliferation when both predators and preys are constantly removed from the system. Consistent with this hypothesis, we show that the experimental removal of increasing volumes of haemolymph from individual bees results in increasing viral densities. By contrast, we do not find consistent support for alternative proposed mechanisms of viral expansion via mite immune suppression or within-host viral evolution. Our results suggest that haemolymph removal plays an important role in the enhanced pathogen virulence observed in the presence of feeding Varroa mites. Overall, these results provide a new model for the mechanisms driving pathogen-parasite interactions in bees, which ultimately underpin honeybee health decline and colony losses.


Assuntos
Abelhas/imunologia , Hemolinfa/fisiologia , Interações Hospedeiro-Parasita , Vírus de RNA/fisiologia , Varroidae/fisiologia , Replicação Viral , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/parasitologia , Abelhas/virologia , Comportamento Alimentar , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/parasitologia , Larva/virologia , Pupa/crescimento & desenvolvimento , Pupa/imunologia , Pupa/parasitologia , Pupa/virologia , Varroidae/crescimento & desenvolvimento
17.
Proc Biol Sci ; 286(1895): 20182452, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30963951

RESUMO

The arrival of the ectoparasitic mite Varroa destructor on the western honeybee Apis mellifera saw a change in the diversity and prevalence of honeybee RNA viruses. One virus in particular, deformed wing virus (DWV) has become closely associated with V. destructor, leading many to conclude that V. destructor has affected viral virulence by changing the mode of transmission. While DWV is normally transmitted via feeding and faeces, V. destructor transmits viruses by direct injection. This change could have resulted in higher viral prevalence causing increased damage to the bees. Here we test the effect of a change in the mode of transmission on the composition and levels of honeybee RNA viruses in the absence of V. destructor. We find a rapid increase in levels of two viruses, sacbrood virus (SBV) and black queen cell virus (BQCV) after direct injection of viral extracts into honeybee pupae. In pupae injected with high levels of DWV extracted from symptomatic adult bees, DWV levels rapidly decline in the presence of SBV and BQCV. Further, we observe high mortality in honeybee pupae when injected with SBV and BQCV, whereas injecting pupae with high levels of DWV results in near 100% survival. Our results suggest a different explanation for the observed association between V. destructor and DWV. Instead of V. destructor causing an increase in DWV virulence, we hypothesize that direct virus inoculation, such as that mediated by a vector, quickly eliminates the most virulent honeybee viruses resulting in an association with less virulent viruses such as DWV.


Assuntos
Abelhas/virologia , Interações Hospedeiro-Patógeno , Vírus de RNA/fisiologia , Varroidae/virologia , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/parasitologia , Dicistroviridae/fisiologia , Interações Hospedeiro-Parasita , Pupa/crescimento & desenvolvimento , Pupa/parasitologia , Pupa/virologia , Varroidae/fisiologia
18.
Viruses ; 11(2)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699904

RESUMO

Deformed wing virus (DWV) is an emerging infectious disease of the honey bee (Apis mellifera) that is considered a major cause of elevated losses of honey bee colonies. DWV comprises two widespread genotypes: the originally described genotype A, and genotype B. In adult honey bees, DWV-B has been shown to be more virulent than DWV-A. However, their comparative effects on earlier host developmental stages are unknown. Here, we experimentally inoculated honey bee pupae and tested for the relative impact of DWV-A versus DWV-B on mortality and wing deformities in eclosing adults. DWV-A and DWV-B caused similar, and only slightly elevated, pupal mortality (mean 18% greater mortality than control). Both genotypes caused similarly high wing deformities in eclosing adults (mean 60% greater wing deformities than control). Viral titer was high in all of the experimentally inoculated eclosing adults, and was independent of wing deformities, suggesting that the phenotype 'deformed wings' is not directly related to viral titer or viral genotype. These viral traits favor the emergence of both genotypes of DWV by not limiting the reproduction of its vector, the ectoparasitic Varroa destructor mite, in infected pupae, and thereby facilitating the spread of DWV in honey bees infested by the mite.


Assuntos
Abelhas/virologia , Genótipo , Pupa/virologia , Infecções por Vírus de RNA/veterinária , Vírus de RNA/genética , Asas de Animais/patologia , Animais , Vírus de RNA/patogenicidade , Carga Viral , Asas de Animais/virologia
19.
Arch Insect Biochem Physiol ; 100(4): e21539, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30790339

RESUMO

Silkworm (Bombyx mori) larvae are widely used to express exogenous proteins. Moreover, some silkworm pupal proteins can be used as drug-loading materials for selfexpressed oral tolerance drugs. However, several proteins expressed in silkworm pupae cause severe allergic reactions in humans and animals. Interestingly, some baculovirus vectors have been shown to alter the host gene and its expression in insect cells, but this has not been confirmed in silkworm. Here, we analyzed the effects of infection with an empty B. mori baculovirus (BmNPV) vector on silkworm pupal protein expression. Using a proteomics approach, the allergens thiol peroxiredoxin (Jafrac1), 27-kDa glycoprotein (p27k), arginine kinase, and paramyosin as well as 32 additional differentially expressed proteins were identified. Downregulation of the messenger RNA expression of the four known allergens was observed after BmNPV infection; subsequent changes in protein expression were confirmed by the western blot analysis using polyclonal antibodies prepared with recombinant proteins of the four allergens. Collectively, these data indicate that the four known allergens of silkworm pupae can be reduced by infection ith an empty BmNPV vector to increase the safety of silkworm pupa-based exogenous protein expression and drug delivery of oral pharmaceuticals. In addition, the four recombinant allergen proteins may contribute to the diagnosis of allergic diseases of silkworm pupa.


Assuntos
Alérgenos/metabolismo , Baculoviridae/fisiologia , Bombyx/virologia , Proteínas de Insetos/metabolismo , Alérgenos/genética , Animais , Bombyx/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Pupa/metabolismo , Pupa/virologia
20.
J Biomol Struct Dyn ; 37(14): 3607-3615, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30198390

RESUMO

The viral cathepsin from Bombyx mori Nuclear Polyhedrosis Virus (BmNPV-Cath) is a broad-spectrum protease that participates in the horizontal transmission of this virus in silkworm by facilitating solubilization of the integument of infected caterpillars. When a B. mori farm is attacked by BmNPV, there are significant sericultural losses because no drugs or therapies are available. In this work, the structure of viral cathepsin BmNPV-Cath was used as a target for virtual screening simulations, aiming to identify potential molecules that could be used to treat the infection. Virtual screening of the Natural Products library from the Zinc Database selected four molecules. Theoretical calculations of ΔGbinding by the molecular mechanics Poisson-Boltzmann surface analysis (MM-PBSA) method indicated that the molecule Zinc12888007 (Bm5) would have high affinity for the enzyme. The in vivo infection models of B. mori caterpillars with BmNPV showed that treatment with a dose of 100 µg Bm5 dissolved in Pluronic-F127 0.02% was able to reduce the mortality of caterpillars in 22.6%, however, it did not impede the liquefaction of dead bodies. Our results suggest a role of BmNPV-Cath in generating a pool of amino acids necessary for viral replication and indicate a mechanism to be exploited in the search for treatments for grasserie disease of the silkworm.


Assuntos
Bombyx/virologia , Catepsinas/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nucleopoliedrovírus/enzimologia , Proteínas Virais/química , Animais , Avaliação Pré-Clínica de Medicamentos , Larva/virologia , Ligantes , Estrutura Terciária de Proteína , Pupa/virologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...